ARCHES WP4 Software documentation

Frangois-Xavier Pineau
CDS Strasbourg

November 27, 2015
v0.6

Contents

1 Overview
1.1 Scriptprinciple
1.2 Stablecolumns e

2 Loading and creating a table
2.1 Commands OVEIVIEW v v v v v vt et e e
2.2 Command get: loads aninputtable
2.2.1 TheFiledataloader
222 TheURLdataloader
2.2.3 The VO Simple Cone Search dataloader
224 The VizieR dataloader
2.2.5 The RowCatFile (RCF)loader

2.3 Common union: merge the result of several get commands by removing
duplicated Tows e

2.4 Command cache: pass over the get command
2.5 Command where: selecttows
2.6 Command buildmoc: build alocal MOC
2.7 Command set: select columns which may be used in the xmatch
271 Setpos ... e e e e e e e
2772 setepoch
2773 SetpoSerr . . .o ... e e e e e e e e e
274 SEtPpm e e e e e e e e e e e
2775 Setpmerro e e e e e e e
2.77.6 setextent e e e e e e e e
2.8 Selecting tables columns, defining and enriching their metadata
2.8.1 setcols
282 addmeta
29 Commandprefix.
2.10 Command save e
2.11 Command cleartables

W W

O 00 00 00 N N 33

3 Generating synthetic tables 16

3.1 Commands OVEIVIEW v v v it e et e e e e e 16
3.2 Command synthetic e 16
3.2.1 Option geometry=GEOM 16

3.2.2 Option poserr[A-Z]type=ERR_TYPE 17

3.2.3 Option poserr[A-Z]mode=RAND_MODE 17

33 Commandsave 19
4 Computing a density map 20
4.1 Commands OVEIVIEW v v v vt et et et e 20
4.2 Command densamp 20
421 densmapknn e 21

422 densmap kernsmooth 0oL 21

423 densmap balloon, 21

424 densmap samplepoint 22

43 Commandsave 22
44 Examplescriptandresults 22
5 Matching two tables 25
5.1 Commands OVEIVIEW v v v it e et e e e e e 25
5.2 Command switchtables 25
5.3 Commandxmatch e 25
53.1 xmatchknn 25

5.3.2 xmatchknn_kd 26

5.33 xmatchknn_rpm e 26

5.3.4 xmatchknn_bpm 26

53.5 xmatchcone, 26

5.3.6 xmatchcone_kd, 26

5.3.7 xmatchcone_lpm 26

5.3.8 xmatchcone_rpm e 27

5.3.9 xmatchcone_bpm 27
5.3.10 xmatchchi2 27
5.3.11 xmatch proba2_vIl 27
5.3.12 xmatch proba2_v2 28
5.3.13 xmatch proba2_v3 28
5.3.14 xmatchchi2_Ipm 28
5.3.15 xmatchchi2_rpm e 28
5.3.16 xmatch chi2_bpm 28
5.3.17 xmatchext 1 29
5318 xmatchext_r e 29
5.3.19 xmatchext b e 29

5.4 Command xmatch, option join, 30
54.1 join=inner e e e 30

542 join=left e e 30

543 join=right e e 31

544 Join=full e 31

545 join=lleft e 31

5.4.6 join=rright e 32

547 Join=ffull 32

54.8 join=inner_bar e e 33

549 join=left bar
5.4.10 join=right_bar
5.5 Command addconstrainto oo
5.6 Commandmerge
5.6.1 mergertoepoch o
5.62 mergepos e e e e e e e
5.6.3 mergeepoch
5.6.4 mergeposerr e e e e e
5.6.5 merge poserrepoch
5.6.6 mergerpm e e
5.6.7 mergerpmerr e e e
5.6.8 mergerextent e
5.6.9 mergerdist e
5.6.10 merge chi2pos
5.7 Command addconstraint
5.8 Commandaddcol
5.9 Commandaddcols
5.10 Command save
5.11 Command buildmoc

Matching multiple tables computing probabilities

6.1 Principle
6.2 xmatchproba3_vI e
6.3 xmatchprobad4_vI e
6.4 xmatch probaN_vI e

6.4.1 Parameter joins o e

One example script (more to come)

List of constants and functions available in expression

A.l Listofmathconstants

A2 Listof mathfunctions
A.2.1 General purpose functions
A.2.2 Astronomy specific functionso L.

A3 Listofstring functions

39
39
39
40
40
41

42

List of Figures

1

— =0 00 O\ N AW N

— O

Visual results of the above script in TOPCAT. Top left: sample point
estimator. Top right: knn. Middle left: fixed bandwidth kernel smooth-
ing. Middle right: balloon estimator. Bottom left: density histograms in
arcmin™?. Bottom right: point distribution on the sky.
Venn diagram of the INNERJOIN
Venn diagram of the LEFTJOIN
Venn diagram of the RIGHT JOIN
Venn diagram of the FULLJOIN
Venn diagram of the LLEFTJOIN
Venn diagram of the RRIGHTJOIN
Venn diagram of the FFULLJOIN
Venn diagram of the INNER_BARJOIN
Venn diagram of the LEFT_BARJOIN
Venn diagram of the RIGHT BARJOIN

List of Tables

1

[e-BEN e NV, N NIRUS I (9}

11
12

Number of pixel on the full sky and approximative pixel side size ac-
cording to the HEALPix norder (see tab. 1 of Gdrski et al. (2004),
astro-ph/0409513).
Left and right tables to be joined based on their positions.
Result of left table INNER JOIN right table
Result of left table LEFT JOIN righttable
Result of left table RIGHT JOIN righttable
Result of left table FULL JOIN righttable
Result of left table LLEFT JOIN righttable
Result of left table RRIGHT JOIN right table
Result of left table FFULL JOIN righttable
Result of left table INNER_BAR JOIN right table
Result of left table LEFT_BAR JOIN righttable
Result of left table RIGHT_BAR JOIN righttable

24
30
31
31
31
32
32
33
33
33
34

1 Overview

1.1 Script principle

A script consists in a sequence of xmatches. You have first to load two tables before

xmatching them (loading only one table will result in performing a self-xmatch on this
table). You can then follow on by loading a new table and xmatching it with the result
of the previous xmatch.
The left table is the one which is defined first, reading a script from top to bottom.
So, for the first xmatch the left table is the first loaded table and the right table is the
second loaded table. For the next xmatches, the result of the previous xmatch is always
the /eft table and the new loaded table is the right table. To summarize this, the logical
structure of a script is as follows:

create table_1

create table_2

xmatch table_1 (left) versus table_2 (right) —> table_1_2

create table_3

xmatch table_1_2 (left) versus table_3 (right) —> table_1_2_3
create table 4

xmatch table_1_2_3 (left) versus table_4 (right) —> table_1_2_3_4

The commands used to create a table are explained in §2 and the ones used to perform
a xmatch are explained in §5.

Some xmatches (i.e. the probabilistic xmatch for more than two tables) requires all
tables to be loaded. In this case, the logical struture becomes:

create table_1

create table 2

... create table_n

xmatch all tables from 1 ton —> table_1..._n

create table_n+1

xmatch table_1..._n (left) versus table_n+1 (right) —> table_1..._n+1

1.2 Stable columns

To be able to perform successive xmatches, we have defined a set of “stable” as-

trometric columns. The minimal set of “stable” columns consists in the two columns
containing the positions, i.e. the right ascension («) and the declination (6). By “stable”
we mean that from two input tables having each a set of @ and ¢ columns, the xmatch
creates a new table having only one set of @ and ¢ columns. We will have to decide
how we merge ! the two sets of input “stable” columns to create the new set of “stable”
columns.
All “stable” columns are “merged” while all “non-stable” columns are concatenated in
the new table. §2.7 deals with the commands used to set the “stable” columns of input
tables, §2.8.1 deals with the command used to set the “non-stable” columns, and §5.6
deals with the commands used to merge the input tables “stable” columns into the new
table resulting from a xmatch.

1. “merge” has here a general meaning, we can e.g. decide not to merge but to keep the left (or the right)
table “stable” columns.

We give here the list of the possible “stable” columns:
posRA, posDec positions, in decimal degrees;
posEpoch epoch at which the positions have been computed, in years;

ePosA, ePosB, ePosPA 10 error ellipse on the positions, in arcseconds (ePosA, eposB)
and degrees (ePosPA);

ePosEpoch epoch at which the positional error ellipse has been computed, in decimal
Julian years;

pmRcd, pmDec proper motion (on @ cos ¢ and 6), in mas/yr.

ePmA, ePmB, ePmPA error ellipse on the proper motion, in mas/yr and degrees;
extA, extB, extPA extension ellipse, in arcsec and degrees;

dMEC minimum enclosing cone diameter, in arcsec (result of a xmatch);

nPos number of positions used to compute the merged positions (result of a xmatch);
chi2Pos value of the positional y? (result of a xmatch);

In the future, we may add the parallax (plx) and its error (ePlx), the radial velocity (7v)
and its error (eRv), proper motion y? parameters (nPM and chi2PM), ...

2 Loading and creating a table

2.1 Commands overview

Here is the list of the commands available to load a table. The order is important
and we strongly recommend to use them in the same order as they appear here.
A “? before a command means it is optional. Optional commands can become manda-
tory depending on the chosen xmatch algorithm, e.g. set poserr is needed to use the
chi2 xmatch.

get LOADER options
? get LOADER options
9
? union col=id_column_name
? cache file_name (fits|votable)
? save file_name (fits|votable|csv)
? buildmoc name=... norder=... ra=... dec=...
? save moc_file_name (fits|json)
? where condition
set pos ra=expression dec=expression
? set epoch year=expression
? set poserr type=ERR_TYPE paraml=expression param2=... param3=...
? set pm rcd=expression dec=expression
? set pmerr type=ERR_TYPE paraml=expression param2=... param3=...
? set extent type=EXT_TYPE paraml=expression param2=... param3=...
? set cols (¥|/regexp/|col_namelexpression as new_col_namel]) [, ...]
? addmeta col_name [datatype=...] [unit=...] [ucd=...] [precision=...] [...]
? addmeta ...
?..
? prefix prefix
? save file_name (fits|votable|csv)
expression means a colname or a formula using or not one or several column name(s).

The list of available formulas is given in appendix §A.
Each command is described in the next sections.

2.2 Command get: loads an input table

Input tables can come from :
— afile on a local drive
— afile accessible through a URL
the VO Simple Cone Search protocol
VizieR
— a RowcCatFile (specific CDS binary file)
Several data loaders are available to load a file according to its origin. Each data loader
has a name and a set of parameters which are described in the following sections.
You can chain get commands to load and concatenate tables having the same schema.
See command union to merge tables possibly having common/duplicated rows.

2.2.1 The File data loader

Load a file on your local hard drive.

get FileLoader file=filename

— filename is the complete path of the file you want to load.

Supported formats are basically the formats supported by Topcat: VOTable, FITS,
CSV....
Because of its lack of metadata, we recommend not to use CSV.

2.2.2 The URL data loader

Load a file accessible through HTTP.
get URLLoader url=http:/your_url
Supported formats are the same as the file loader ones.

2.2.3 The VO Simple Cone Search data loader

Load a table using the VO Simple Cone Search protocol.
get VOConeSearchLoader url=... ra=... dec=... sr=... [verb=(1|2|3)]

— url - the base URL of the cone search service;

— ra - right ascension of the cone center in decimal degrees;
— dec - declination of the cone center in decimal degrees;

— sr - search radius of the cone in decimal degrees;

— verb - ? verbosity must be 1, 2 or 3.

2.2.4 The VizieR data loader

Load a catalogue available through VizieR.
Two modes are available: the allsky mode and the cone mode.

Mode allsky Load all the given table sources.
get VizieRLoader tabname=vizier_tab_name mode=allsky [allcolumns]
WARNING: do not use the mode allsky with large catalogues!

Mode cone Load the table sources which are inside the given cone.

get VizieRLoader tabname=vizier_tab_name mode=cone center="STRING"
radius=RFEAL(deglarcmin|arcsec) [allcolumns]

— center - can be an object name or a position, e.g. center="M 31" or center="12.345678
+87.654321";
— radius - radius of the cone search, in one of the 3 possible units, e.g. radius=2.4arcmin.

For both modes
— tabname - name of the table in VizieR, e.g. for 2MASS: rabname=I11/246/out;
— allcolumns - 7 load all columns available in VizieR, not only default ones.

Examples Allsky with the Downes catalogue:
get VizieRLoader tabname=V/123A/cv mode=allsky allcolumns
Cone with 2MASS:

get VizieRLoader tabname=11/246/out mode=cone center="12.256460 +56.878920"
radius=2arcmin allcolumns

2.2.5 The RowCatFile (RCF) loader

Load a table from a query on a RowCatFile. Several modes are availables.
get RCFLoader tabname=STRING mode=mode mode_args filter=EXP
limit=INT

In which filter and limit are optional:
— filter - a JAVA like expression to pre-filter sources
— limit - maximum number of rows to be returned

mode=allsky Load all sources the RCF file contains.

mode=allsky

mode=cone Load the file sources which are inside the given cone.
mode=cone center=RA+-DEC radius=REAL

— center - a position in decimal degrees or INAME, e.g. center="12.345678+87.654321"
or JHHMMSS.S[+-]DDMMSS.S;
— radius - radius of the cone search in degrees.

mode=zone Load the file sources which are inside the given zone (range in RA and
DEC).

mode=zone minRA=REAL maxRA=REAL minDec=REAL maxDec=REAL

— minRA - smallest RA in decimal degrees;

— maxRA - highest RA in decimal degrees (minRA > maxRA if the zone contains
RA=0);

— minDec - smallest Dec in decimal degrees;

— maxDec - highest Dec in decimal degrees.

mode=box Load the file sources which are inside the given box.
mode=box center==RA+-DEC width=REAL height=REAL pa=REAL

— center - center of the box in decimal degrees or INAME, e.g. center="12.345678+87.654321"
or JHHMMSS.S[+-]DDMMSS.S,

width - width of the box in degrees;

height - height of the box in degrees;

pa - position angle in degrees.

mode=healpix Load the file sources which are inside the given HEALPix cell.
mode=healpix norder=INT ipix=LONG bnorder=INT

center - center of the box in decimal degrees or INAME, e.g. center="12.345678+87.654321"
or JHHMMSS.S[+-]DDMMSS.S;

— width - width of the box in degrees;

height - height of the box in degrees;

— pa - position angle in degrees.

mode=moc Load the file sources inside the given inline MOC or the given MOC file.
(TO BE IMPLEMENTED, ask me by email if you need it).

2.3 Common union: merge the result of several get commands by
removing duplicated rows

Perform the union of several tables loaded by chaining get commands, removing
duplicated rows based on a columns containing a uniq identifier.

union col=id_colname

— col - name of the column containing a uniq identifier.
Remark: when several rows share a same identifier, only the first one is kept in output.

2.4 Command cache: pass over the get command

Pass over the getr command and load the given file if it exists, else execute the get
command and save its result in the given file.

cache filename (votablelfits)

The cache command is very similar to the save command. But, contrary to the save
command which overwrites existing files, the cache command saves the result of a get
only if the given file does not exist. If the given file already exists, it is loaded instead
of executing the get command.
Remarks:
— obviously, it is useless to use the cache command with the file data loader (see
§2.2.1);
— after a get don’t use both save and cache commands, or at least not in that order
(cache must be first).
Warning: be carefull to assign different names to files associated with different get
commands!
Example:

get VizieRLoader tabname=1/284/out mode=cone center="12.256460
+20.878920" radius=10.2arcmin allcolumns
cache usnobl.cached.votable votable

At first execution, the get command is executed and its result is saved in the file us-
nobl.cached.vot.

At the second execution, the getr command is not executed, the file usnobl.cached.vot
is loaded instead (if it has not been removed manually in which case the get command
is executed).

2.5 Command where: select rows

The where command removes all the sources of the loaded table which do not match
the given condition. The syntax relies on the Java language and is thus very similar to
the one used in TOPCAT.

where expression
Example 1 with 2MASS:

where Jmag - Hmag > -2 && Jmag - Hmag < 2
Example 2 with 2MASS:

where Jmag-Hmag < 3 && havDist(deg2rad(RAJ2000), deg2rad(DEJ2000),
deg2rad(12.345678), deg2rad(-87.654321)) < deg2rad(10/ 60.0)

10

Here, havDist(...) compute the angular distance between two points using the Haversine
formula and deg2rad convert degrees into radians.
Example 3 with USNO-B.1:

where (pmRA == null || pmDE == null || sqrt(pmRA * pmRA + pmDE *
pmDE) < 100) && (VarType == null || !VarType.equals("SN"))

The list of availables constants and functions is available §A.

2.6 Command buildmoc: build a local MOC

Build a MOC.
buildmoc name=STRING norder=INT ra=expression dec=expression

in which:
— name - The name given to the MOC (to be used in a command addcol moc)
norder - HEALPix level at which the MOC is built (see tab. 1);
ra - right ascension of position in decimal degrees;
— dec - declination of the position in decimal degrees;
expression - can be a column name or a more complex expression including (or
not) column names.
Example:

buildmoc name=2MASS_MOC norder=11 ra=RAJ2000 dec=DEJ2000

WARNING: the value of the norder should be choosen so that the MOC resolution is
high but without having empty cells in the area covered by the catalogue. So the norder
you will put will probably depends on the galactic lattitude.

2.7 Command set: select columns which may be used in the xmatch

As explained in §1.2, there are two kinds of columns, and two ways to select them:
— columns (mainly astrometric ones) which are used in the xmatch process and are
merged to be reused in the next xmatch (the “stable” columns);
— additional columns which are not directly used in the xmatch (flags, photometry,
class, ...) and which are concatenated after each xmatch.
This section refers to the first type. For how to select the “non-stable” columns, see
§2.8.

2.7.1 set pos

Sets the position to be used in the xmatch.
set pos ra=expression dec=expression

— ra - right ascension of position in decimal degrees;
— dec - declination of the position in decimal degrees;
— expression - can be a column name or a more complex expression including (or
not) column names.
Example:

set pos ra=RAJ2000 dec=DEJ2000

11

2.7.2 set epoch

Sets the epoch of the positions (defined by set pos) to be used in the xmatch.
set epoch year=expression

— year - epoch of the positions, in decimal Julian years;
— expression - can be a column name or a more complex expression including (or
not) column names.
Example USNO-B.1:

set epoch year=2000.0
Example 2MASS:
set epoch year=jd2epoch(JD)
Remark: jd2epoch is a function which converts Julian days into an epoch in years.

2.7.3 set poserr

Sets the errors of the positions (defined by set pos) to be used in the xmatch.
set poserr type=ERR_TYPE param1=exp param2=exp param3=exp epoch=exp

— type - one of the following error type: CIRCLE, ELLIPSE, RCD_DEC_ELLIPSE,
COV_ELLIPSE, COR_ELLIPSE

— paraml - radius or semi-major axis of the 1o error ellipse or 1o error on @ cos d,
in arcseconds;

— param?2 - 7 semi-minor axis of the 1o error ellipse or 1o error on 6, in arcsec-
onds;

— param3 - 7 position angle in degrees or covariance in arcsec” or correlation coeff;

— epoch - ? epoch of the positional error (useful if we want to take into account
proper motions). E.g in USNO-B.1 positions have been computed at epoch 2000
using proper motions, but the errors on the proper motions have not been propa-
gated and are not taken into account into the positional uncertainties.

— exp - can be a column name or a more complex expression including (or not)
column names.

Example 2MASS:

set poserr type=ELLIPSE param1=errMaj param2=errMin param3=errPA
epoch=jd2epoch(JD)
Example USNO-B.1:

set poserr type=RCD_DEC_ELLIPSE param1=sqrt(e_RAJ2000*e_RAJ2000
+ 130%*130)/1000.0 param2=sqrt(e_DEJ2000*e_DEJ2000 + 130%130)/1000.0
epoch=Epoch

2

Here, we convert the error from mas to arcsec and we add a systematic error of 0.13
arcseconds (do not take this value seriously).

type=CIRCLE
— paraml - radius of the 1o error circle, in arcsec.

type=ELLIPSE
— paraml - semi-major axis of the 1o error ellipse, in arcsec;
— param?2 - semi-minor axis of the 1o error ellipse, in arcsec;
— param3 - position angle of the 1o error ellipse, in degrees.

12

type=RCD_DEC_ELLIPSE Equivalent to ELLIPSE with param3=0.
— paraml - 1o error on a cos d, in arcsec;
— param?2 - 1o error on ¢, in arcsec.

type=COV_ELLIPSE
— paraml - 1o error on @ cos d, in arcsec;
— param?2 - 1o error ¢, in arcsec;
— param3 - covariance of the 1o errors, in arcsec?.

type=COR_ELLIPSE
— paraml - 1o error on @ cos d, in arcsec;
— param?2 - 1o error ¢, in arcsec;
— param3 - correlation (p) between the 10 errors.

2.74 setpm

Sets the proper motion to be used in the xmatch.

set pm rcd=expression dec=expression

— red - proper motion in @ cos d, in mas/yr;
— dec - proper motion in 4, in mas/yr;
— expression - can be a column name or a more complex expression including (or
not) column names.
Example on USNO-B.1:

set pm rcd=pmRA dec=pmDE

2.7.5 set pmerr
Sets the proper motion errors to be used in the xmatch.
set pmerr type=ERR_TYPE param1=exp param2=exp param3=exp epoch=exp

Parameters are exactly the same as the position error ones (see §2.7.3), except that units
are mas/yr.
Example USNO-B.1:

set pmerr type=RCD_DEC_ELLIPSE paraml=e_pmRA param2=e_pmDE

2.7.6 set extent
Sets the object extension to be used in the xmatch.
set pmerr type=ERR_TYPE param1=exp param2=exp param3=exp epoch=exp

Parameters are the same as the position error ones (see §2.7.3) but only ELLIPSE and
CIRCLE are accepted. Units are arcseconds.

13

2.8 Selecting tables columns, defining and enriching their meta-
data

When you load a table, you have the possibility to select the columns you want to
save, the non-selected ones being discarded. The selected columns (and their associated
metadata) are kept in memory during the successive xmatches and are printed in the
output result file. The software allows you to overwrite or to add a column metadata
(see command addmeta, §2.8.2).

As in SQL you can also create new synthetic columns. In that case YOU HAVE TO
define the new column metadata using the addmeta command (see §2.8.2).

2.8.1 set cols

Selects the columns of the input table you want to keep in the output.

set cols (*|/regexp/|col_namelexpression as new_col_name]) [, ...]
in which

— *-select all the input table columns;

— col_name - select the column having the given name;

— regexp - select the input table columns which names are matched by the given
regular expression;

— expression as new_col_name - create a new synthetic column from the given

expression, new_col_name is the name of the new created column.
Example with 2MASS:

set cols 2MASS, RAJ2000, DEJ2000, JD, /err((Maj)|(Min)|(PA))/, /(e_)?[JHK]mag/,
/.flg/, Jmag-Kmag as J-K

Here 2MASS, RAJ2000, DEJ2000, JD are column names; err((Maj)|(Min)|(PA)) is a
regular expression which selects columns errMaj, errMin, errPA (we could have used
the more concise regexp err.+; (e_)?[JHKmag is a regular expression which selects
columns Jmag, e_Jmag, Hmag, e_Hmag, Kmag and e_Kmag; .flg is a regular expres-
sion which selects columns Qflg, Rflg, Bflg, Clfg, Xflg and Aflg and Jmag-Kmag as J-K
is a new syntethic column named J-K and which stores the difference between columns
Jmag and Kmag.

2.8.2 addmeta

Sets or overwrites the given metadata of the given column.
addmeta col_name metatype=val [, metatype=val] ...

in which

— col_name - name of the column we want to define or change metadata;

— metatype - the metadata we want to change can be: datatype, arraysize, precision,
unit, desc, ucd, utype, width, xtype, ref, type, linkValue, linkHref; To have more
informations of the meaning of those metadata, see e.g. the IVOA document
which defines VOTables;

— val - the new value to be set.

Example with 2MASS:
addmeta 2MASS datatype=char arraysize=17 width=17 ucd="meta.id;meta.main"
desc="Src designation"
addmeta J-H datatype=double precision=2 width=>5 unit=mag ucd="phot.color"
desc="Color Jmag-Kmag"

14

The first line is not necessary (metadata already defined when we load the VOTable
from VizieR) but the second one is mandatory since the column J-H is a synthetic
column.

addmeta is also mandatory for non-synthetic columns if the data come from a file which
does not contains any metadata (like CSV files).

2.9 Command prefix
Add the given prefix to the name of each column selected by set cols.
prefix prefix
Example with 2MASS:
prefix 2mass_
Will transform RAJ2000 into 2mass_RAJ2000, Jmag into 2mass_Jmag, ...

2.10 Command save

Save the table into the given file at the given format.
save filename (votable|fits|csv)
Example with 2MASS:
save test/2mass.vot votable

Save the loaded 2MASS data as a VOTable into the file named 2mass.vot in the sub-
directory fest of the current directory.

2.11 Command cleartables

Remove all tables: used to start a new script in the same file.

15

3 Generating synthetic tables

3.1 Commands overview

Here is the (small) list of commands available to generate and save synthetic tables.

synthetic options
? save file_prefix (fits|votablelcsv)
When generating several synthetic tables, sources which are common in two or
more tables have the same ID.
Each command is described in the next sections.

3.2 Command synthetic

The synthetic command generates one or several synthetic tables.
synthetic nTabs=INT seed=LONG preffix=true \
geometry=GEOM geom_args \
n[A-Z]=INT n[A-Z][B-Z]=INT n[A-Z][B-Z][C-Z]=INT ...\
poserr[A-Z]type=ERR_TYPE \
poserr[A-Z]lmode=RAND_MODE rand_mode_args
Simple options (see next sections for the other options):
— nTabs - the number of synthetic tables to be generated
— nA, nB, ... - number of sources only in catalogue A, B, ... respectively
nAB, nAC, ... - number of sources in common only in catalogues A and B, B and
C, ... respectively
nABC, ... - number of sources in common only in catalogues A and B and C, ...

— seed - 7 seed used to initialize the random number generator
preffix - 7 add a preffix ’A_’, ’B_’, ... before tables ID column
Example for 3 tables:
synthetic nTabs=3 geometry=cone ra=22.51 dec=-68.94 r=0.25\
nA=1000 nB=2000 nC=300 \
nAB=500 nAC=1500 nBC=780\
nABC=1200\
poserrAtype=CIRCLE poserrAmode=formula \
paramA1="0.1+random()/2" \
poserrBtype=RCD_DEC_ELLIPSE poserrBmode=function \
paramB 1func="0.8+log(x+0.1)/2" \
paramB 1xmin=0 paramB 1xmax=2 paramB Intep=100 \
paramB2func="0.6+log(x+0.1)/2" \
paramB2xmin=0 paramB2xmax=1.5 paramB Intep=100 \
poserrCtype=ELLIPSE poserrCmode=histogram \
poserrCfile=sample.fits countC=counts \
paramClstep=0.01 paramC]lcol=halfMaj \
paramC2step=0.01 paramC2col=halfMin \
paramC3step=1 paramC]col=posAng

3.2.1 Option geometry=GEOM

The geometry option define the region of the sky in which the positions of random
sources are generated.

16

geometry=allsky Sources are uniformly distributed on the unit sphere. No additional
option.

geometry=cone Sources are uniformly distributed on a given cone.
geometry=cone ra=DOUBLE dec=DOUBLE r=DOUBLE

— ra - right ascension of the cone center, in decimal degrees;
— dec - decliantion of the cone center, in decimal degrees;
— r - radius of the cone, in degrees.

Example:

geometry=cone ra=12.3647 dec=-68.4297 r=0.5

geometry=healpix 'WARNING: bug to be solved in HEALPix librairie!
Sources are uniformly distributed on the given HEALPix ? cell:

geometry=healpix norder=INT ipix=LONG

— norder - norder of the HEALPix cell;
— ipix - index of the HEALPix cell.
Example:

geometry=healpix norder=3 ipix=542

geometry=moc WARNING: bug to be solved in HEALPix librairie!
Sources are uniformly distributed on the area of the unit sphere defined by the given
MOC"*.

geometry=moc (moc=ASCII_MOC)|(mocfile=FILE)

— moc - the ASCII representation of a MOC;
— mocfile - name of the file (FITS, JSON, ...) containing the MOC.
Examples:

geometry=moc moc="1/1,3,4 2/4,25,12-14,21"
geometry=moc mocfile=mymoc.fits

3.2.2 Option poserr[A-Z]Jtype=ERR_TYPE

The number of options in RAND_MODE depends on the error type. See §2.7.3 to
obtain the liste of all possible error types.

3.2.3 Option poserr[A-Z]mode=RAND_MODE

The poserr[A-Z]mode defines the way the random positional error of sources of
catalogue [A-Z] are computed.

poserr[A-Z]mode=formula Positional errors are computed from the given formula
(wich may contains a call the the Java method random()):

poserr[A-Z]mode=formula param[A-Z][1-3]=EXP ...
Example with poserrAtype=RCD_DEC_ELLIPSE:
poserrAmode=formula paramA1="0.1+0.5*random()" paramA2=0.8

2. http://adsabs.harvard.edu/abs/2005Ap]...622..759G
3. http://ivoa.net/documents/MOC/

17

http://adsabs.harvard.edu/abs/2005ApJ...622..759G
http://ivoa.net/documents/MOC/

poserr[A-Z]mode=function Positional errors are randomly computed following the
distribution of the given function (the software takes care of normalizing it to have a
probability density function, pdf):

poserr[A-Z]mode=function
param[A-Z][1-3]func=EXP
param[A-Z][1-3]xmin=DOUBLE
param[A-Z][1-3]xmax=DOUBLE
param[A-Z][1-3]nstep=INT

in which:

— param[A-Z][1-3]func - the function (you must use the notation ’x’ for the vari-
able), MUST be always positive on the domain [Xyin, Xmax] (if not, not a pdf after
normalisation);

— param[A-Z][1-3]xmin - lower bound of the domain;

— param[A-Z][1-3]xmax - upper bound of the domain;

— param[A-Z][1-3]nstep - number of steps to be used in the numerical integration.

Example with poserrAtype=CIRCLE:

poserrAmode=function
paramA I1func="0.8+log(x+0.1)/2"
paramA 1xmin=0
paramA lxmax=1.5
paramA Instep=100

Technically, the Trapezoidale rule is used to compute the numerical integrate /
of the function f over the full domain [Xpin, Xmax]. Then, we pick a random number
r € [0, 1[. We use the Trapezoidale rule again from xy = xpi, to x; = xo + ih, with h
which depends on the number n of steps 4 = *me—ni» such as:

I, = / fdx <l < / Fodx = 1,
X0 X0

rI—IH

Then the random value choosen is xang = Xi-1 + A7 I

poserrAmode=histogram Positional errors are randomly computed following the
given histogram (possibly built on-the-fly) normalized to obtain a step pdf.

poserr[A-Z]mode=histogram
poserr[A-Z]file=FILE
param[A-Z][1-3]col=COLNAME|EXP
param[A-Z][1-3]step=DOUBLE
count[A-Z]=COLNAME|EXP

with:
— poserr[A-Z]file - file containing the histogram or the data to build the histogram;
— param[A-Z][1-3]col - expression or name of the column of the file containing
the data of param[1-3];
— param[A-Z][1-3]step - step to be used for param[1-3];
— count[A-Z] - expression (e.g. 1) or name of the column of the file containing the
counts (must return an integer).
Example with poserrAtype=RCD_DEC_ELLIPSE:

18

poserr[A-Z]mode=histogram
poserrAfile=histo.fits
paramA Istep=0.01 paramA1col=0.5*(LOW_1+HIGH_1)
paramA Istep=0.01 paramA1col=0.5*(LOW_2+HIGH_2)
countA=COUNT

Technically, we pick a random value r € [0, 1[. We find a bin i such as Zi:o count; <
r.count < Ziz(') count;y1. Then, for each dimension d, we pick another random value

ry € [0, stepyl.

3.3 Command save

Save each generated table into a file having the given prefix and the given format.
save prefix=fileprefix suffix=suffix common=FILE format=(votablelfits|csv)
in which:
— prefix - prefix of the output files;
— suffix - suffix of the output files;
— common - ? name of the ouput file containing the exact positions before bluring;
— format - file format, votable, fits or csv.
The final name of the file will be: prefix[A-Z]suffix.
Example :

save prefix=test/synth suffix=.vot common=test/synthAll.vot format=votable

Save synthetic tables as VOTables into files named synth[A-Z].vot (synthAll.vot for the
table containing unblurred positions) in the sub-directory test of the current directory.

19

4 Computing a density map

You can compute density maps of the tables you have built.
For this you can use the densmap command after having created a table — via commands
get, set pos, ... (see §2) — or after having performed a xmatch (see §5).

4.1 Commands overview

densmap algo ... mode=[conelallsky] [...] nthreads=[INT|max] norder=INT
save filename fits

4.2 Command densamp

Create a density map based on the HEALPix tessellation:

densmap algo algo_options mode=[conelallsky] [mode_options]
nthreads=[INT|max] norder=INT

Common options:

— nthreads=[INT|max] - number of threads to be used to compute the density map:
— max - automatically sets to the maximum number of threads available on the
machine;
— INT - from 1 to max (automatically set to max if greater than max).
— norder=INT - the wanted HEALPix norder (directly linked to the map resolution,
see tab. 1).

Option mode:

— mode=allsky - for small allsky catalogues (be careful at the norder not to use too
much memory).
— mode=cone - for a table which is the result of a cone search.
— autodetect - automatically find the center and the radius of the cone;
— center - can be an object name or a position, e.g. center="M 31" or cen-
ter="12.345678 +87.654321";
— radius - radius of the cone search, in one of the 3 possible units (deg, arcmin
or arcsec), e.g. radius=2.4arcmin.

Example: see §4.4.

20

norder | Ny, = 12x2mrder | g, = Q};{f
0 12 58°.6
1 48 29°.3
2 192 14°.7
3 768 7°.33
4 3072 3°.66
5 12288 1°.83
6 49152 55'.0
7 196 608 27".5
8 786432 13'.7
9 3145728 6’.87

10 12582912 3’44
11 50331648 172
12 201326592 517.5
13 805306368 257.8
14 3.22x10° 127.9
15 1.29x10'0 6”.44
16 5.15%x10'0 37.22
17 2.06x10"! 17.61
29 3.46x10"8 | 37.93 x 107~

Table 1: Number of pixel on the full sky and approximative pixel side size according
to the HEALPix norder (see tab. 1 of Gdrski et al. (2004), astro-ph/0409513).

The next section explains the different algorithms available.

4.2.1 densmap knn

Computes the local density by k-nearest neighbour averaging.
densmap knn k=INT ...

Options:
— k: number of nearest neighbours used to compute the local density
Example: see §4.4.

4.2.2 densmap kernsmooth
Computes the local density by fixed bandwidth kernel smoothing (using the Epanech-
nikov function).
densmap knn h=REAL[deg|arcmin|arcsec] ...

Options:
— h: kernel bandwidth, in one of the 3 possible units (deg, arcmin or arcsec).
Example: see §4.4.

4.2.3 densmap balloon

Computes the local density by balloon estimator: variable bandwidth kernel smooth-
ing in which the bandwidth of an estimation is here the distance to the k™ nearest
neighbour.

21

densmap balloon k=INT ...
Options:
— k: number of nearest neighbours used to compute the bandwidth of the kernel
smoothing
Example: see §4.4.

4.2.4 densmap samplepoint

Computes the local density by sample point density estimator: variable kernel smooth-
ing in which each object bandwidth is the distance to the k& nearest neighbour.

densmap samplepoint k=INT ...
Options:
— k: number of nearest neighbours used to compute the local density
Example: see §4.4.

4.3 Command save

Save the density map into the given file at the given format (only fits allowed so
far).

save filename fits
Example:

save usnobl.densmap.samplepoint50.auto.fits fits

4.4 Example script and results
The following script computes 8 density maps on USNO-B1.0 data.

Load table
get VizieRLoader tabname=I/284/out mode=cone center="12.256460 +20.878920"
radius=10.2arcmin allcolumns

cache usnobl.viz.cone.12d256460p20d878920.10d2arcmin.allcols.vot votable

Build table

where !Flags.matches(".s.")

set pos ra=RAJ2000 dec=DEJ2000

save usnobl.vot votable

Compute and save 8 density maps

densmap knn k=50 mode=cone center="12.256460 +20.878920" radius=10.2arcmin
nthreads=max norder=16

save usnob1.densmap.knn50.noauto.fits fits

densmap knn k=50 mode=cone autodetect nthreads=max norder=16

save usnobl.densmap.knn50.auto.fits fits

densmap balloon k=50 mode=cone center="12.256460 +20.878920"
radius=10.2arcmin nthreads=max norder=16

save usnobl.densmap.balloon50.noauto.fits fits

densmap balloon k=50 mode=cone autodetect nthreads=max norder=16

save usnobl.densmap.balloon50.auto.fits fits

densmap kernsmooth h=3arcmin mode=cone center="12.256460 +20.878920"
radius=10.2arcmin nthreads=max norder=16

save usnobl.densmap.kernsmooth3arcmin.noauto.fits fits

22

densmap kernsmooth h=3arcmin mode=cone autodetect nthreads=max norder=16

save usnobl.densmap.kernsmooth3arcmin.auto.fits fits

densmap samplepoint k=50 mode=cone center="12.256460 +20.878920"
radius=10.2arcmin nthreads=max norder=16

save usnobl.densmap.samplepoint50.noauto.fits fits

densmap samplepoint k=50 mode=cone autodetect nthreads=max norder=16

save usnobl.densmap.samplepoint50.auto.fits fits

The results for 4 density maps are displayed on fig. 1.

23

55
8]
25
g
z
3
2
15
1
G [
Main [A 18 C
Row Row
Table: [1: usnobl.d i o fit: I~ wan] Table: [2: usnobl.densmap.knns0.nonauto.fits I~ R[]
Longitude Axis: [RA | [degrees || Longitude Axis: [RA ~|[deqrees |+
Latitude Axis: [DEC ~|[degrees [+ Latitude Axis: [DEC ~|[degrees [+
Aux1 Axis: [DENSITY [~][4p] Cirog Cirip M Heat [~][<p] Aux1 Axis: [DENSITY ~][p] Cirog Cirip [MEE Heat ~|[p]

["Potential: 456 748 Included: 113 806 Visible: 113 806

["Potential: 457 256 Included: 114 314 Visible: 114 314]

A
s as
8 3
25 25
]]
3 3
> 2
1s 15
N
) 1
4 BE[E e o 2 BE [e o
(Main ['A 1B C] (Main A8 [c]|
Row Row
Table: [4: usnob1.d to.fits [+] wan [+] Table: [5: usnob1.densmap.balloons0.nonauto.fits [+] WAl [+]
Longitude Axs: Longitude Axs:
Latitude Avis: [DEC | [degrees |~ Latitude Axis: [DEC | [degrees |~
Aux 1 Axis: [DENSITY ~|[4p] Ttog CiFip [WEE et ~|[4] Aux 1 Axis: [DENSITY ~|[4p] Ttog CiFip [WEE Heat ~|[p]
Potential: 456 740 Tncluded: 114 314 Visible: 114 314 Potential: 457 256 Included: 114 314 Visible: 114 314
knns0
no* X %X
17 1 knnso 04X x Kk X?ﬁgxx
1 balloonso X X x
Lo 1 hegm SGX X éé/% X X%
15 | spointso S X P 34 “
14 g) %R RS
X R X R xR
%
13 £ FE % X X% N X
12 >2< X % ><>2< * N §>< § <
11 ® 5 KR I N R XS
gL X Eﬁx géx%é T I
5 b X VT
e g R R B N %
e R K S5 R
07 X %5% X X ﬁkx

10 12 14 16 18 20 22 24 26 28 30 32 34 X x
density [nSrc/arcmin~ 2]

Eile Export Statistics Display Help

le Export Statistics Display Help

S DENSTTY 00377
A 12,256 RA s | E
B oe] D HE|C bEc b BEC
Row Statistics for 2: usnobl.densmap.knn50.nonauto. fit Row Statistics for 3: usnobL.d i to.fit
Name Mean Minimum £ Name Mean) Minimum Maximum 0od
[PKEL | 2,08724610 | 2,6138865 | 20872230910 | 4 PIXEL 2,08724E10 | 2,61366E5 | 20872230910 | 20875223202 | 114314
DENSTY | 1,09821 | 0,324081 T.30441 | | DENSTTY 2,05049 0.407323 0.97018 3.37247 | 114314
B 12.2565 0,001331 T2 550 | 1414 RA 12,2565 0,091331 12,0797 12,4358 | 114314
Aux1 Axis: [DENS| [DEC 20,6789 0,08532 20,70873 21,0003 | 114314 DEC 20,5789 0,085326 20,70873 2100933 | 114314

’ Subset for calculations: =] Subset for calculations:
Potential: 456 74{

24
Figure 1 — Visual results of the above script in TOPCAT. Top left: sample point es-
timator. Top right: knn. Middle left: fixed bandwidth kernel smoothing. Middle right:
balloon estimator. Bottom left: density histograms in arcmin™2. Bottom right: point
distribution on the sky.

5 Matching two tables

The xmatch part consists in building a new table by cross-comparing the positions
of the objects of the two input tables. It can be seen as a SQL join in which the join
condition is a positional criteria. Compared to SQL, we have added join operators *.
As explained in §1.2, we also have to merge the stable columns.

5.1 Commands overview

? switchtables

xmatch algo algo_options join=join_type
? addconstraint condition

? merger toepoch type ? merger pos type
? merger dist type

? merger chi2pos type

? merger epoch type

? merger poserr type

? merger poserrepoch type

? merger pm type

? merger pmerr type

? merger extent type

? addcol type options

? addcols type options

? save filename (fits|votable) ? buildmoc mocname ? save MOCfilename
(fits|json)

Example:

xmatch chi2 nStep=1 nMax=1 completeness=0.997 join=inner
merger pos ML
merger pmerr right

5.2 Command switchtables

To be used when only two tables are loaded. Switch the two input tables so the right
table becomes the left table and the left table becomes the right table.

5.3 Command xmatch
The command you are waiting for ;)
xmatch algo algo_options join=join_type

The next sections explain the possible algorithms (algo) and their options, while §6.4.1
details the available join types (join_type).
5.3.1 xmatch knn

Performs a simple k-nearest neighbours xmatch.

xmatch knn k=... dMax=... join=join_type

4. the result of those new operators can also be obtained in SQL from its 4 joins (full, left, right, inner)
plus a constraint or from a more complex query

25

Options:
— k=INTEGER - maximum number of nearest neighbours;
— dMax=DOUBLE - distance upper limit, in arcseconds (can be Double. MAX_VALUE,
see Java documentation).

Example:

xmatch knn k=2 dMax=4.25 join=left

5.3.2 xmatch knn_kd

Same as xmatch knn (§5.3.1) but using a kd-tree instead of a M-tree. The main
interest consists in comparing performances and cross-validating both methods.

5.3.3 xmatch knn_rpm

Same as xmatch knn (§5.3.1) but taking into account the right table proper motions.
WARNING: you must have set the proper motion parameters in the right table and the
epoch in both catalogues (see §2.7).

WARNING: after the xmatch, the right sources positions are no more the original ones
but the ones computed at epoch the mean of the left sources epoches.

5.3.4 xmatch knn_bpm

Same as xmatch knn (§5.3.1) but taking into account both tables proper motions.
WARNING: you must have set the proper motions and the epochs in both catalogues
(see §2.7).

5.3.5 xmatch cone

Performs a simple cone-search xmatch.
xmatch cone dMax=... join=join_type

Options:
— dMax=DOUBLE - distance upper limit, in arcseconds.
Example:

xmatch cone dMax=4.25 join=full

5.3.6 xmatch cone_kd

Same as xmatch cone (§5.3.5) but using a kd-tree instead of a M-tree. The main
interest consists in comparing performances and cross-validating both methods.

5.3.7 xmatch cone_lpm

Same as xmatch cone (§5.3.5) but taking into account the left table proper motions.
WARNING: you must have set the proper motion parameters in the left table and the
epoch in both catalogues (see §2.7).

26

5.3.8 xmatch cone_rpm

Same as xmatch cone (§5.3.5) but taking into account the right table proper mo-
tions.
WARNING: you must have set the proper motion parameters in the right table and the
epoch in both catalogues (see §2.7).

5.3.9 xmatch cone_bpm

Performs a simple cone-search xmatch taking into account both catalogues proper
motions.

xmatch cone_bpm dMax=... epoch=... join=join_type
Options:
— dMax=DOUBLE - distance upper limit, in arcseconds.
— epoch=DOUBLE - epoch at which positions are computed to perform the xmatch.
Example:

xmatch cone_bpm dMax=4.25 epoch=2000.0 join=full

WARNING: you must have set the proper motions and the epochs in both catalogues
(see §2.7).

5.3.10 xmatch chi2

Performs a chi2 xmatch (the xmatch you are probably waiting for :).
xmatch chi2 nStep=... nMax=... completeness=... join=join_type
Options:
— nStep=INT - number of xmatch done using chi2 (=1 at first xmatch);
— nMax=INT - total number of xmatches you plan to perform using chi2;
— completeness=DOUBLE - wanted chi2 completeness (must not be highest than

at previous steps).
Example:

xmatch chi2 nStep=2 nMax=3 completeness=0.9973 join=inner

You are here performing the second chi2 xmatch out of 3. A completeness of 0.9973 is
equivalent to the 3¢ criteria in 1 dimension.
WARNING: you must have set the positional errors on both catalogues (see §2.7).

5.3.11 xmatch proba2 _vi

Performs a chi2 xmatch between two catalogues and computes probabilities for
each association. The computed probabilities are based on positional coincidence only
and take into account the sky density of sources.

xmatch proba2_v1 completeness=... area=...
Options:
— completeness=DOUBLE - wanted chi2 completeness
— area=DOUBLE - the sky surface area of the two tables, in radians~2, e.g. the
cone surface for a cone search.
Example (for a cone of radius=8.0arcmin):

xmatch proba2_v1 completeness=0.9973 area=0.0000170

27

Remark: so far, you can choose neither the JOIN type (INNER) nor mergers (a default
merger is used). It does not yet take into account proper motions.
WARNING: this version
— Assumes that the positional errors are correct, i.e. neither underestimated not
overestimated, so that the y distribution really follows the Rayleigh distribution.
— Does not care about multi-candidates so the probabilities are symmetric (A x
B probabilities = B x A probabilities): in other words, each match are treated
individually.

5.3.12 xmatch proba2_y2

Idem as proba2_v1 but we take into account the fact that the first catalogue sources
can have multiple candidates, and only one candidate can be the true counterpart.
WARNING: the probabilities are no more symmetric!

5.3.13 xmatch proba2_y3

Performs a chi2 xmatch between two catalogues and computes probabilities for
each association. The computed probabilities are based on positional coincidence only
and take into account local sky densities of sources.

This version of the algorithm computes density maps to compute local priors.

xmatch proba2_v3 completeness=... densmethod=(knn|kernsmooth|balloon|samplepoint)
densmap_params
Options:
— completeness=DOUBLE - wanted chi2 completeness
— densmethod=STRING - the method used to compute density maps (algo in §4.2)
— densmap_params - parameters of the density map method (see §4.2)
Example:

xmatch probal _v3 completeness=0.9973 densmethod=kernsmooth h=6arcmin
norder=14 mode=cone center="30.9253 -7.78128" radius=15.0arcmin nthreads=max

5.3.14 xmatch chi2_lpm

Same as xmatch chi2 (§5.3.10) but taking into account the left table proper motions.
WARNING: you must have set the proper motion — possibly proper motion error and
positional error epoch — parameters in the left table and the epoch in both catalogues
(see §2.7).

5.3.15 xmatch chi2_rpm

Same as xmatch chi2 (§5.3.10) but taking into account the right table proper mo-
tions.
WARNING: you must have set the proper motion — possibly proper motion error and
positional error epoch — parameters in the right table and the epoch in both catalogues
(see §2.7).

5.3.16 xmatch chi2_bpm

Performs a chi2 xmatch taking into account both tables proper motions.

xmatch chi2_bpm nStep=... nMax=... completeness=... epoch=... join=join_type

28

Options:

— nStep=INT - number of xmatch done using chi2 (=1 at first xmatch);
nMax=INT - total number of xmatches you plan to perform using chi2;
completeness=DOUBLE - wanted chi2 completeness;
epoch=DOUBLE - epoch at which the positions and their errors are computed to
perform the xmatch.

Example:

xmatch chi2 nStep=2 nMax=3 completeness=0.9973 epoch=2000.0 join=inner

WARNING: you must have set the proper motions — possibly proper motion errors and
positional errors epoch — and the epochs in both catalogues (see §2.7).

5.3.17 xmatch ext_l
Performs a xmatch associating objects of the right table which overlap the left table
extended objects.
xmatch ext_I k=... join=join_type

Options:
— k=DOUBLE - ellipse extension factor (most of the time = 1), i.e. radius of the
matching ellipse considering the input extension has a radius of 1.
Example:

xmatch ext_l k=1.2 join=left_bar

Command used if you want to remove from the right catalogue the sources intersecting
the left catalogue extended sources, considering 1.2 times their extension.
WARNING: you must have set the extension on the left catalogue (see §2.7).

5.3.18 xmatch ext_r
Performs a xmatch associating objects of the left table which overlap the right table
extended objects.
xmatch ext_r k=... join=join_type

Options:
— k=DOUBLE - ellipse extension factor (most of the time = 1), i.e. radius of the
matching ellipse considering the input extension has a radius of 1.
Example:

xmatch ext_r k=1.2 join=right_bar

Command used if you want to remove from the left catalogue the sources intersecting
the right catalogue extended sources, considering 1.2 time their extension.
WARNING: you must have set the extension on the right catalogue (see §2.7).

5.3.19 xmatch ext_b

Performs a xmatch associating overlapping objects of both catalogues.
xmatch ext_b kl=... kr=... join=join_type

Options:
— kI=DOUBLE - left ellipse extension factor (most of the time = 1), i.e. radius of
the matching ellipse considering the input extension has a radius of 1;

29

— kr=DOUBLE - right ellipse extension factor (most of the time = 1), i.e. radius of
the matching ellipse considering the input extension has a radius of 1.
Example:

xmatch ext_r kl=1.2 kr=1.3 join=inner

WARNING: you must have set the extension on both catalogues (see §2.7).

5.4 Command xmatch, option join

To illustrate the different join possibilities, let us define two tables (tab. 2). The
matching positions of the left and the right tables have the same name.

src_id ‘ position
right_1 | pos_d
right_2 | pos_b
right_3 pos_b
right_4 pos_c

src_id | position
left_1 pos_a
left_ 2 | pos_b
left_3 pos_c

Table 2: Left and right tables to be joined based on their positions.

For a definition of the SQL joins, you can also have a look here:

— inner join: http://www.w3schools.com/sql/sql_join_inner.asp
left join: http://www.w3schools.com/sql/sql_join_left.asp

— right join: http://www.w3schools.com/sql/sql_join_right.asp
full join: http://www.w3schools.com/sql/sql_join_full.asp

5.4.1 join=inner

The classical xmatch join : returns only the matching sources from the left and right
catalogues (defined in Tab. 2).

src_id_left ‘ position ‘ src_id_right
left_2 pos_b right_2
left 2 pos_b right_3
left 3 pos_c right_4

RIGHT TABLE

Table 3: Result of left table INNER JOIN
right table
Figure 2 — Venn diagram of the INNER
JOIN

5.4.2 join=left

Returns all sources from the left catalogue, with the matching sources in the right
catalogue (defined in Tab. 2).

30

http://www.w3schools.com/sql/sql_join_inner.asp
http://www.w3schools.com/sql/sql_join_left.asp
http://www.w3schools.com/sql/sql_join_right.asp
http://www.w3schools.com/sql/sql_join_full.asp

src_id_left | position | src_id_right
left_1 pos_a null RIGHT TABLE
left 2 pos_b right_2
left 2 pos_b right_3
left_3 pos_c right_4

Table 4: Result of left table LEFT JOIN
right table Figure 3 — Venn diagram of the LEFT
JOIN

5.4.3 join=right

Returns all sources from the right catalogue, with the matching sources in the left
catalogue (defined in Tab. 2).

src_id_left ‘ position ‘ src_id_right
left_2 pos_b right_2
left 2 pos_b right_3
left_3 pos_c right_4

null pos_d right_1
Table 5: Result of left table RIGHT JOIN
right table Figure 4 — Venn diagram of the RIGHT
JOIN

54.4 join=full

Returns all sources from the left and from the right catalogues (defined in Tab. 2).

src_id_left | position | src_id_right
left_1 pos_a null
left 2 pos_b right_2
left 2 pos_b right_3
left_3 pos_c right_4
null pos_d right_1

Table 6: Result of left table FULL JOIN Fjgyre 5 — Venn diagram of the FULL
right table JOIN

54.5 join=lleft

Returns all sources from the left catalogue plus the sources of the left catalogue
with the matching sources in the right catalogue (defined in Tab. 2).

31

src_id_left | position | src_id_right
left_1 pos_a null
left_2 pos_b null
left_2 pos_b right_2
left 2 pos_b right_3
left 3 pos_c null
left_3 pos_c right_4

RIGHT TABLE

Figure 6 — Venn diagram of the LLEFT
Table 7: Result of left table LLEFT JOIN JOIN

right table

5.4.6 join=rright

Returns all sources from the right catalogue plus the sources of the right catalogue
with the matching sources in the left catalogue (defined in Tab. 2).

src_id_left | position | src_id_right

null pos_b right_2

left_ 2 pos_b right_2
null pos_b right_3

left_2 pos_b right 3
null pos_c right_4

left 3 pos_c right_4
null pos_d right_1 Figure 7 — Venn diagram of the RRIGHT

JOIN
Table 8: Result of left table RRIGHT

JOIN right table

5.4.7 join=ffull

Returns all sources from the left and from the right catalogues plus the matching
sources of both catalogues (defined in Tab. 2).

src_id_left | position | src_id_right
left_1 pos_a null
left 2 pos_b null
null pos_b right_2
left_2 pos_b right_2
null pos_b right 3
left 2 pos_b right_3
left_3 pos_c null
null pos_c right_4
left_3 pos_c right_4
null pos_d right_1

Table 9: Result of left table FFULL JOIN
right table

32

Figure 8 — Venn diagram of the FFULL
JOIN

5.4.8 join=inner_bar

Returns the result of the full join minus the result of the inner join (defined in Tab.
2).
Said differently, its returns all sources from both the left and the right catalogue which
do not match.

src_id_left ‘ position ‘ src_id_right
left_1 pos_a null
null pos_d right_1

Table 10: Result of Ileft table IN-
NER_BAR JOIN right table

Figure 9 — Venn diagram of the IN-
NER_BAR JOIN

5.4.9 join=left_bar

Returns the result of the full join minus the result of the left join. Columns of the
left catalogue are then removed (since they are all null) (defined in Tab. 2).
Said differently, it returns all sources from the right catalogue which do not match any
of the left catalogue sources.

position | src_id_right
pos_d ‘ right_1

Table 11: Result of left table LEFT_BAR
JOIN right table

Figure 10 — Venn diagram of the
LEFT_BAR JOIN

33

5.4.10 join=right_bar

Returns the result of the full join minus the result of the right join. Columns of the
right catalogue are then removed (since they are all null) (defined in Tab. 2).
Said differently, it returns all sources from the left catalogue which do not match any
of the right catalogue sources.

src_id_left ‘ position
lefi_l | pos_a

RIGHT TABLE

Table 12: Result of left table
RIGHT_BAR JOIN right table

Figure 11 - Venn diagram of the
RIGHT_BAR JOIN

5.5 Command addconstraint

Add a condition which must be satisfied to associate two objects during the xmatch.
addconstraint condition
Example:

addconstraint (sdss9.r - 2mass.Jmag) > -2 && (sdss9.r - 2mass.Jmag < 2)

5.6 Command merge

The merge command is used to invoke mergers. Mergers are used to set the “stable”
columns (see §1.2) of the new table resulting from a xmatch. A merger can set one or
several columns at the same time. For example, the merge pos LM sets the positions, the
positional errors, the value of the positional chi2 and the number of sources matched
by chi2; while merge pos left only sets the positions.

The general syntax is:

merge label algo

The next section details the available labels and, for each label, the algorithms you can
choose.

5.6.1 merger toepoch

This merger is special and has to be used when you perform xmatches taking into
account proper motions. It does not directly set columns but tells at which epoch the
astrometry of sources having a proper motion has to be computed before being merged.

merge toepoch rype

in which type can be:
— org or o - keep original data (do not take into account proper motion);
— left or 1 - compute the astrometry of the right source (which must has a proper
motion) at the epoch of the left source;

34

— right or r - compute the astrometry of the left source (which must has a proper
motion) at the epoch of the right source;
— bothEPOCH or bEPOCH - compute the astrometry of both sources (which must
have proper motions) at the given epoch EPOCH (e.g. EPOCH=2000.0).
Example:

merge toepoch both1995.42

5.6.2 merge pos

Merges at least the positions.
merge pos algo

in which algo can be:

— left or I - keep left table positions;

— right or r - keep the right table positions;

— mean or m - the new position is the centroid of the left and right table positions.
It also sets dMEC with the distance between the left and right positions.

— MEC or mec - new positions are the center of the minimum enclosing cone
(computed taking into account all the positions of the previous xmatched tables).
It also sets dMEC with the value of the diameter of the minimum enclosing cone
(MECQ).

— besterr - sets the positions of the sources having the smallest positional uncer-
tainties, comparing the semi-major axis (the two xmatched tables must have po-
sitional errors). It also sets the new positional errors (the minimum ones).

— ML or ml or chi2 - new positions are the one estimated by a maximum likelihood,
based on the individual positional errors. It means that to use this merger both
left and right table should have positional errors. The merger also sets the new
positional errors (error on the ML estimate), nPos and chi2Pos.

WARNING: issue to be solved with ML and besterr: always sets the error epoch even
when there is no such information in both the right and the left tables.

5.6.3 merge epoch

Sets the epoch.
merge epoch algo

in which algo can be:
— left or I - keep left value;
right or r - keep right value;
— preferLeft or Ir - keep left value, or right value if left value is null;
preferRight or 1l - keep right value, or left value if right value is null;
highest or h - keep the highest value;
smallest or s - keep the smallest value;
mean or m - keep the mean between the left and the right value.

5.6.4 merge poserr

Merges the positional error. If the positional error also has an epoch, use merge
poserrepoch (§5.6.5).

merge poserr type

35

in which type can be:
— left or I - keep left value;
— right or r - keep right value;
Remark: to actually merge positional errors, see merge pos LM in §5.6.2.

5.6.5 merge poserrepoch

Merges the positional error and its epoch:
merge poserrepoch rype

in which type can be:
— left or 1 - keep left value;
— right or r - keep right value;
Remark: to actually merge positional errors, see merge pos LM in §5.6.2.

5.6.6 merger pm

Merges the proper motion (if you have informations about the error, use merger

pmerr §5.6.7)
merge pm algo

in which algo can be:

— left or | - keep left value;
right or r - keep right value;
— preferLeft or Ir - keep left value, or right value if left value is null;
— preferRight or rl - keep right value, or left value if right value is null;

5.6.7 merger pmerr

Merges the proper motion and associated errors.
merge pmerr algo

in which algo can be:
— left or I - keep left value;
— right or r - keep right value;
preferLeft or Ir - keep left value, or right value if left value is null;
preferRight or 11 - keep right value, or left value if right value is null;
— besterr - if both left and right table have PM with error, keep the one having the
smallest error;

5.6.8 merger extent

Merges the source’s extensions.

merge ext algo

left or 1 - keep left value;

— right or r - keep right value;

preferLeft or Ir - keep left value, or right value if left value is null;

preferRight or 11 - keep right value, or left value if right value is null;

— smallest or s - if both left and right sources have an extension, keep the one
having the smallest semi-major axis;

— highest or h - if both left and right sources have an extension, keep the one having

the highest semi-major axis.

36

5.6.9 merger dist

Merges the distances dMEC:
merge dist type

in which fype can be:
— left or I - keep left value;
— right or r - keep right value;
— 12r - compute a new value which is the distance from the left position to the right
position;
— MEC or mec - compute the diameter of the minimum enclosing cone (taking into
account all sources which have been merged during the successive xmatches).
Remarks:
— DON’T USE merger dist WHEN you use:
— merge pos mean, see §5.6.2;
— merge pos ML, see §5.6.2.
— using MEC during intermediate xmatches may be useless as the new values takes
into account previous positions. It is useful only if you save intermediary results.
— DON’T USE MEC when you have xmatches with proper motion because the
positions used to compute the MEC do not take into account proper motions!

5.6.10 merge chi2pos

Merges the chi2Pos and nPos value:
merge chi2pos type

in which type can be:
— left or I - keep left value;
— right or r - keep right value;
Remark: DON’T USE merger chi2pos WHEN you use merger pos LM, see §5.6.2.

5.7 Command addconstraint

The command addconstraint is similar to the where command (see §2.5) but applies
on the result of a xmatch.
It select the rows matching the given expression:

addconstraint expression
Example with SDSS and 2MASS:

addconstraint sdss9.rmag - 2mass.Jmag < 3

5.8 Command addcol

The command addcol add a new column to the output table.
addcol type name=... 7append options

With:
— name - the name to be given to the column
— append - put the column at the end of the table, hence put it just after ’stable’
columns.
In which type can be:

37

— moc moc=mocname: add a column telling if the position is out of (0) is in (1) or
is on the border (2) of the given moc (you must have previously generated the
moc using the buildmoc command)

— maxProba: store the highest of all probabilities (algo probaN_v1 only)

— maxProbal.abel: store the label of the columns which contains the highest of all
probabilities (algo probaN_v1 only)

— limitmag: To BE DOCUMENTED

Example in one script:

buildmoc name=SDSS9_MOC ra=RAJ2000 dec=DEJ2000 norder=11

addcol moc moc=SDSS9_MOC name=isSDSSCovered
addcol maxProba name=maxProba
addcol maxProbalLabel name=maxProbal.abel

5.9 Command addcols

Similar to addcol except that it adds several new columns.
addcols type options name=... ?7append options

In which type options can be:
— maxProbas prefix=PREFIX n=N: generates 2N columns storing the N highest
probabilities and their N associated labels (algo probaN_v1 only)
— sumProbas1* n=N: N is the number of catalogues, generates N — 1 columns
containing the marginalized probabilties of association with the source of the
first catalogue (specific use case!)

5.10 Command save

Save the table into the given file at the given format.
save filename (votablelfits|csv)
Example with 2MASS:
save test/2mass.vot votable

Save the loaded 2MASS data as a VOTable into the file named 2mass.vot in the sub-
directory fest of the current directory.

5.11 Command buildmoc

See §2.6

38

6 Matching multiple tables computing probabilities

This section describes how to cross-match multiple tables if one want to compute
probabilities of identification taking into account a full set of catalogues: In this case,
the xmatch process cannot be iterative any longer.

6.1 Principle

The structure of a script as presented in §1.1 is slightly modified.
Here, you have first to load n tables and then to xmatch them. The logical structure of
such a script is then:

create table_1
create table_2
create table_3

xmatch table_1 versus table_2 versus table_3 versus

WARNING: in ouput, positions and associated errors are estimated by maximum like-
lihood using candidates from each catalogue, even if some or all probabilities of asso-
ciations are low.

6.2 xmatch proba3_vl

Performs a y> xmatch between three catalogues and computes probabilities for each
association.
Usage:

xmatch proba3_v1 completeness=... area=...

Options:
— completeness=DOUBLE - wanted chi2 completeness
— area=DOUBLE - the sky surface area of the tables, in radians~2, e.g. the cone
surface for a cone search.
Info:
— probabilities are based on the final y value, not on y and > (x* = x7 + x3)
— probabilities are based on a model (no systematics, errors neither underestimated
nor overestimated, ...), verify you data fit the model!
In the output file, probabilities are:
— probaABC: probability the 3 associated sources have to be from a same ‘true’
source;
— probaAB_C: probability sources A and B have to be from a same ‘true’ source
and C is from a different ‘true’ source;
— probaAC_B: probability sources A and C have to be from a same ‘true’ source
and B is from a different ‘true’ source;
— probaBC_A: probability sources B and C have to be from a same ‘true’ source
and A is from a different ‘true’ source;
— probaA_B_C: probability the 3 sources have to be from 3 different ‘real’ sources.
probaAB = probaABC + probaAB_C
probaAC = probaABC + probaAC_B
— probaBC = probaABC + probaBC_A

39

6.3 xmatch proba4_vl

Same as proba3_vI for four catalogues, but here probabilities are based on yi, y»
and y;.
In the output file, probabilities are:

— probaABCD: the 4 associated sources are from a same ‘true’ source;

— probaABC_D: A, B and C from a same ‘true’ source, D from a different ‘true’
source

— probaABD_C: A, B and D from a same ‘true’ source, C from a different ‘true’
source

— probaACD_B: A, C and D from a same ‘true’ source, B from a different ‘true’
source

— probaBCD_A: B, C and D from a same ‘true’ source, A from a different ‘true’
source

— probaAB_C_D: A and B from a same ‘true’ source, C and D from 2 other differ-
ent ‘true’ sources

— probaAC_B_D: A and C from a same ‘true’ source, B and D from 2 other differ-
ent ‘true’ sources

— probaAD_B_C: A and D from a same ‘true’ source, B and C from 2 other differ-
ent ‘true’ sources

— probaBC_A_D: B and D from a same ‘true’ source, A and D from 2 other differ-
ent ‘true’ sources

— probaBD_A_C: B and C from a same ‘true’ source, A and C from 2 other differ-
ent ‘true’ sources

— probaCD_A_B: C and B from a same ‘true’ source, A and B from 2 other differ-
ent ‘true’ sources

— probaAB_CD: A and B from a same ‘true’ source, C and D from another ‘true’
sources

— probaAC_BD: A and C from a same ‘true’ source, B and D from another ‘true’
sources

— probaAD_BC: A and D from a same ‘true’ source, B and C from another ‘true’
sources

— probaA_B_C_D: the 4 sources are from 4 different ‘true’ sources

— probaAB = probaABCD + probaABC_D + probaABD_C + probaAB_C_D +
probaAB_CD

— probaAC = probaABCD + probaABC_D + probaACD_B + probaAC_B_D +
probaAC_BD

— probaAD = probaABCD + probaABD_C + probaACD_B + probaAD_B_C +
probaAD_BC

— probaBC = probaABCD + probaABC_D + probaBCD_A + probaBC_A_D +
probaAD_BC

— probaBD = probaABCD + probaABD_C + probaBCD_A + probaBD_A_C +
probaAC_BD

— probaCD = probaABCD + probaACD_B + probaBCD_A + probaCD_A_B +
probaAB_CD

6.4 xmatch probaN_yl1

Performs a y? xmatch between N catalogues and compute probabilities for each
association.

40

Usage:

xmatch probaN_v1 completeness=... joins=... area=... ?meth=median
Options:

— completeness=DOUBLE - wanted chi2 completeness

— area=DOUBLE - the sky surface area of the tables, in radians~2, e.g. the cone
surface for a cone search

— joins=[ILRFIMSG] [ILRFIMSG()]* - define the way the successive tables are
joined (for more information, see §6.4.1)

— ? meth=median - use the mediane instead of the mean to estimate priors (we
recall that the mediane is a robust estimation of the mean so it is much less
sensitive to outliers)

— ? keep=largestnid - to be used with option ids, if the set of not-null identifiers of
a row is a subset of the not-null identifiers of another rows, remove it

— ?2ids=ID _A_COLNAME,ID_B_COLNAME,... - the list of IDs to take into ac-
count for option keep=Ilargestnid

In the output file the number of probabilities you obtain is equal to:

N
Mproba = »_ CNB(K) ()

K=2
In which CX = % (K-combination) is the number of possible xmatches involving

K catalogues among N and B(K) is the Bell number with reprensents the number of
possible partitions of a set of K sources.

K-1

B(K)= Ch_B(p-1) 2)

p=0
Example:
xmatch probaN_v1 joins=I(F) completeness=0.9973 area=0.00003828

6.4.1 Parameter joins

You can use 4 differents letters which are associated to the four basic join types:
— I: means Inner join, see §5.4.1;
L: means Left join, see §5.4.2;
R: means Right join, see §5.4.3;
— F: means Full join, see §5.4.4;
J: means Ilnner join, see §27?;
— M: means LLeft join, see §5.4.5;
S: means RRight join, see §5.4.6;
G: means FFull join, see §5.4.7.
Operations are made from left to right except if you use parentheses *(’ and ’)’.
Examples:
— joins=I(L) & 11 (2 L 3): performs the inner join between table 1 and the result
of the left join between table 2 and table 3;
— joins=IF & (112)F 3: performs the full join between the result of the inner join
of table 1 with table 2 and table 3
— joins=I(FF)L & (11 (2F3F4))L 5 & tabl INNER JOIN (tab2 FULL JOIN
tab3 FULL JOIN tab4) LEFT JOIN tab5

41

7 One example script (more to come)

This script makes the union (full join) of the SDSS and the 2MASS sources, xmatch-
ing them with a chi2 xmatch. The result is then xmatched with the USNO-B.1 (inner
join). So each output row contains one of the three possibilities:

1. the match of one USNO-B.1 and one 2MASS source;

2. the match of one USNO-B.1 and one SDSS source;

3. the match of one USNO-B.1, one 2MASS and one SDSS source.
Remarks:

— This script does not take into account proper motions, even if it should to perform
an accurate xmatch with the USNO-B.1 (in that case, we should have started by
xmatching the USNOB-1.0).

— We add here to the USNO-B.1 positional errors a systematic of 0.13 arcsecond;
don’t take this value too seriously.

42

(9%

Load table 1

get VizieRLoader tabname=V/139/sdss9 mode=cone center="12.256460 +20.878920" radius=10arcmin allcolumns
where mode==1 && Q==3

set pos ra=RAJ2000 dec=DEJ]2000

set epoch year=0bsDate

set poserr type=RCD_DEC_ELLIPSE paraml=e_RAJ2000 param2=e_DEJ2000 epoch=0bsDate

set cols SDSS9,0bjID,/.+12000/,0bsDate, flags,/(e_)?[ugriz]mag/,cl,spCl,subClass,zsp

prefix sdss9

save test/sdss9.vot votable

Load table 2

get VizieRLoader tabname=I11/246/out mode=cone center="12.256460 +20.878920" radius=10.2arcmin allcolumns
where Qflg.matches("[ABC][ABCDU]{2}™)

set pos ra=RAJ2000 dec=DEJ]2000

set epoch year=jd2epoch(JD)

set poserr type=ELLIPSE paraml=errMaj param2=errMin param3=errPA epoch=jd2epoch(JD)

set cols 2MASS,RAJ2000,DEJ2000,]D,/err((Maj) | (Min) | (PA))/,/(Ce_)?[JHK]mag/,/.flg/,IJmag-Hmag as J-H,Hmag-Kmag as H-K,Jmag-Kmag as J-K
addmeta J-H datatype=double precision=2 width=5 unit=mag ucd="phot.color" desc="Color Jmag-Kmag"
addmeta H-K datatype=double precision=2 width=5 unit=mag ucd="phot.color" desc="Color Kmag-Hmag"
addmeta J-K datatype=double precision=2 width=5 unit=mag ucd="phot.color" desc="Color Jmag-Hmag"

prefix 2mass

save test/2mass.vot votable

Perform xmatch of table 1 vs table 2

xmatch chi2 nStep=1 nMax=2 completeness=0.997 join=full

merge pos ML

merge epoch left

save test/sdss9_vs_2mass.vot votable

Load table 3

get VizieRLoader tabname=I1/284/out mode=cone center="12.256460 +20.878920" radius=5arcmin allcolumns

144

"

where !Flags.matches(".s.™)

set pos ra=RAJ2000 dec=DEJ]2000

set epoch year=2000.0

set poserr type=RCD_DEC_ELLIPSE paraml=sqrt(e_RAJ2000*e_RAJ2000 + 130*130)/1000.0 param2=sqrt(e_DEJ2000*e_DEJ2000 + 130%130)/1000.0
epoch=Epoch

set pm rcd=pmRA dec=pmDE

set pmerr type=RCD_DEC_ELLIPSE paraml=e_pmRA param2=e_pmDE

set cols USNO-B1.0,/(e_)?((RA)|(DE))]2000/,Epoch,/(e_)?pm((RA) | (DE))/, (int) sqrt(pmRA * pmRA + pmDE * pmDE) as tanVeloc,/.*mag/,Flags

addmeta tanVeloc datatype=int unit=mas/yr ucd=phys.veloc.transverse desc="Tangential velocity"

prefix usnobl

save test/usnobl.vot votable

Perform xmatch of previous result vs table 3

xmatch chi2 nStep=2 nMax=2 completeness=0.997 join=inner

merge pos ML

merge epoch left

merge pmerr right

merge dist mec

save test/sdss9_vs_2mass_vs_usnobl.vot votable

A List of constants and functions available in expres-
sion

A.1 List of math constants

PI - 3.14159265358979323846
E -2.7182818284590452354

A.2 List of math functions
A.2.1 General purpose functions

Most of them come from java.lang.Math, see:
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html
double toDegrees(double) - converts radians to degrees
double toRadians(double) - converts degrees to radians
double sin(double) - returns the sine of the given angle in radians
double cos(double) - returns the cosine of the given angle in radians
double tan(double) - returns the tangent of the given angle in radians
double sinh(double) - returns the hyperbolic sine of a double value
double cosh(double) - returns the hyperbolic cosine of a double value
double tanh(double) - returns the hyperbolic tangent of a double value

double asin(double) - returns the arc sine of a value; the returned angle is in the range
-P1/2 through PI/2

double acos(double) - returns the arc cosine of a value; the returned angle is in the
range 0.0 through PI

double atan(double) - returns the arc tangent of a value; the returned angle is in the
range -PI/2 through PI/2

double atan2(double, double) - returns the angle theta from the conversion of rect-
angular coordinates (X, y) to polar coordinates (r, theta)

double exp(double) - returns Euler’s number e raised to the power of a double value
double expm1(double) - returns e* — 1

double log(double) - returns the natural logarithm (base e) of a double value
double logl0(double) - returns the base 10 logarithm of a double value

double loglp(double) - returns the natural logarithm of the sum of the argument and
1

double sqrt(double) - returns the positive square root of a double value
double cbrt(double) - returns the cube root of a double value.

double ceil(double) - returns the smallest (closest to negative infinity) double value
that is greater than or equal to the argument and is equal to a mathematical integer

double pow(double, double) - returns the value of the first argument raised to the
power of the second argument

double abs(double) - returns the absolute value of a double value

45

http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html

double floor(double) - returns the largest (closest to positive infinity) double value
that is less than or equal to the argument and is equal to a mathematical integer

double round(double) - returns the closest long to the argument, with ties rounding
up.

double min(double, double) - returns the smallest of two double values

double max(double, double) - returns the greatest of two double values

double hypot(double x, double) - returns +/x* + y? without intermediate overflow or
underflow

double random() - returns a random value uniformly ditributed € [0, 1[

A.2.2 Astronomy specific functions

More specific to astronomy:
double jd2epoch(double) - converts julian days to epoch: epoch = jd/365.25 — 4713

double havDist(double ral, double decl, double ra2, double dec2) - returns the Haver-
sine distance; input parameters in radians, result in radians

double deg2rad(double) - converts degrees to radians

double arcmin2rad(double) - converts arc minutes to radians

double arcsec2ra(double) - converts arc seconds to radians

double mas2rad(double) - converts milli arc seconds to radians

double hms2deg(String) - converts from sexagesimal hours to decimal degrees

double dms2deg(String) - converts from sexagesimal degrees to decimal degrees

A.3 List of string functions

All the function available in Java, see:
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

46

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

	1 Overview
	1.1 Script principle
	1.2 Stable columns

	2 Loading and creating a table
	2.1 Commands overview
	2.2 Command get: loads an input table
	2.2.1 The File data loader
	2.2.2 The URL data loader
	2.2.3 The VO Simple Cone Search data loader
	2.2.4 The VizieR data loader
	2.2.5 The RowCatFile (RCF) loader

	2.3 Common union: merge the result of several get commands by removing duplicated rows
	2.4 Command cache: pass over the get command
	2.5 Command where: select rows
	2.6 Command buildmoc: build a local MOC
	2.7 Command set: select columns which may be used in the xmatch
	2.7.1 set pos
	2.7.2 set epoch
	2.7.3 set poserr
	2.7.4 set pm
	2.7.5 set pmerr
	2.7.6 set extent

	2.8 Selecting tables columns, defining and enriching their metadata
	2.8.1 set cols
	2.8.2 addmeta

	2.9 Command prefix
	2.10 Command save
	2.11 Command cleartables

	3 Generating synthetic tables
	3.1 Commands overview
	3.2 Command synthetic
	3.2.1 Option geometry=GEOM
	3.2.2 Option poserr[A-Z]type=ERR_TYPE
	3.2.3 Option poserr[A-Z]mode=RAND_MODE

	3.3 Command save

	4 Computing a density map
	4.1 Commands overview
	4.2 Command densamp
	4.2.1 densmap knn
	4.2.2 densmap kernsmooth
	4.2.3 densmap balloon
	4.2.4 densmap samplepoint

	4.3 Command save
	4.4 Example script and results

	5 Matching two tables
	5.1 Commands overview
	5.2 Command switchtables
	5.3 Command xmatch
	5.3.1 xmatch knn
	5.3.2 xmatch knn_kd
	5.3.3 xmatch knn_rpm
	5.3.4 xmatch knn_bpm
	5.3.5 xmatch cone
	5.3.6 xmatch cone_kd
	5.3.7 xmatch cone_lpm
	5.3.8 xmatch cone_rpm
	5.3.9 xmatch cone_bpm
	5.3.10 xmatch chi2
	5.3.11 xmatch proba2_v1
	5.3.12 xmatch proba2_v2
	5.3.13 xmatch proba2_v3
	5.3.14 xmatch chi2_lpm
	5.3.15 xmatch chi2_rpm
	5.3.16 xmatch chi2_bpm
	5.3.17 xmatch ext_l
	5.3.18 xmatch ext_r
	5.3.19 xmatch ext_b

	5.4 Command xmatch, option join
	5.4.1 join=inner
	5.4.2 join=left
	5.4.3 join=right
	5.4.4 join=full
	5.4.5 join=lleft
	5.4.6 join=rright
	5.4.7 join=ffull
	5.4.8 join=inner_bar
	5.4.9 join=left_bar
	5.4.10 join=right_bar

	5.5 Command addconstraint
	5.6 Command merge
	5.6.1 merger toepoch
	5.6.2 merge pos
	5.6.3 merge epoch
	5.6.4 merge poserr
	5.6.5 merge poserrepoch
	5.6.6 merger pm
	5.6.7 merger pmerr
	5.6.8 merger extent
	5.6.9 merger dist
	5.6.10 merge chi2pos

	5.7 Command addconstraint
	5.8 Command addcol
	5.9 Command addcols
	5.10 Command save
	5.11 Command buildmoc

	6 Matching multiple tables computing probabilities
	6.1 Principle
	6.2 xmatch proba3_v1
	6.3 xmatch proba4_v1
	6.4 xmatch probaN_v1
	6.4.1 Parameter joins

	7 One example script (more to come)
	A List of constants and functions available in expression
	A.1 List of math constants
	A.2 List of math functions
	A.2.1 General purpose functions
	A.2.2 Astronomy specific functions

	A.3 List of string functions

